Posted on Jun 27, 2016

Earlier we discussed the introduction of a continuous random variable and cumulative distribution function. Please see this article if you haven’t read it about already. Now we will give some problems related to Cumulative distribution function so you can have a deeper understanding of this topic. These problems are adapted from the following textbook: “Probability and Random Processes by Scott Miller 2nd Edition.” Problem-1: Which of the following mathematical functions could be the CDF of some random variable? Remember: To be a CDF of some random variable, the function \(F_{X}(x)\) must start at zero when \(x = -\infty\), end at one...